翻訳と辞書
Words near each other
・ Erdély TV
・ Erdélyi
・ Erdélyi Bastion
・ Erdélyi Napló
・ Erdöl-Erdgas-Museum Twist
・ Erdös-Rényi Prize in Network Science
・ Erdőbénye
・ Erdőfalva
・ Erdőhorváti
・ Erdőkertes
・ Erdőkürt
・ Erdős
・ Erdős arcsine law
・ Erdős cardinal
・ Erdős conjecture on arithmetic progressions
Erdős distinct distances problem
・ Erdős number
・ Erdős Prize
・ Erdős space
・ Erdősmecske
・ Erdősmárok
・ Erdős–Anning theorem
・ Erdős–Bacon number
・ Erdős–Borwein constant
・ Erdős–Burr conjecture
・ Erdős–Diophantine graph
・ Erdős–Faber–Lovász conjecture
・ Erdős–Fuchs theorem
・ Erdős–Gallai theorem
・ Erdős–Graham problem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Erdős distinct distances problem : ウィキペディア英語版
Erdős distinct distances problem
In discrete geometry, the Erdős distinct distances problem states that between distinct points on a plane there are at least distinct distances. It was posed by Paul Erdős in 1946. In a 2010 preprint, Larry Guth and Nets Hawk Katz announced a solution.〔. See also (The Guth-Katz bound on the Erdős distance problem ) by Terry Tao and (Guth and Katz’s Solution of Erdős’s Distinct Distances Problem ) by János Pach.〕
==The conjecture==
In what follows let denote the minimal number of distinct distances between points in the plane. In his 1946 paper, Erdős proved the estimates
\sqrt-1/2\leq g(n)\leq c n/\sqrt for some constant c. The lower bound was given by an easy argument, the upper bound is given by a \sqrt\times\sqrt square grid (as there are O( n/\sqrt) numbers below ''n'' which are sums of two squares, see Landau–Ramanujan constant). Erdős conjectured that the upper bound was closer to the true value of ''g''(''n''), specifically, g(n) = \Omega(n^c) holds for every .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Erdős distinct distances problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.